Name	Date	Period	
		ical Time Webquest	
Activity #1: An Overview of Earth History			
Open <u>An Overview of Earth History</u> Read and j	fill in the blank	S.	
The Earth has been around for approximately			
	is a time	line that describes all this time.	
Scientists have found rocks that formed during of	every time perio	od of Earth's history! In	
, they have found millions of	and	to past environments.	
Open <u>The Earth's Geologic Time Scale</u>			
What is a(n)			
eon?			
era?			
epoch?			
age?			
Now, put eon, era, epoch, and age in order from	largest to smal	lest amount of time.	
largest	sm	allest	

Name	Date	Period

Complete the geological time scale by filling in the information from \underline{here} . You only need to summarize the pivotal events. Boxes that are gray do not need to be filled in. (MYA = million years ago)

Eon	Era	Period	Epoch	Pivotal events
		Quaternary Period	Holocene	
		1.8 mya to today	Pleistocene	
	Cenozoic		Pliocene	
	65 mya	T. (* D. * 1	Miocene	
	through today	Tertiary Period	Oligocene	
		65 to 1.8 mya	Eocene	
			Paleocene	
		Cretaceous	Upper	
Phanerozoic	Mesozoic	146 to 65 mya	Lower	
540 mya through today	248 to 65 mya	Jurassic 208 to 146 mya		
		Triassic 248 to 208 mya		
		Permian 280 to 248 mya		
		Carboniferous	Pennsylvanian	
	Paleozoic	360 to 280 mya	Mississippian	
	540 to 248	Devonian	408-360 mya	
	mya	Silurian	438-408 mya	
		Ordovician	505 -438 mya	
		Cambrian	540-500 mya	
Proterozoic	2.5 bya- 540 mya	Vendian/Ediacaran 600-540 mya		
Archeozoic	3.9-2.5 bya			
Hadean	4.6-3.9 bya			is 5 Peril Code and Code in Live Web and A

Name	Date	Period	
Activity #2: Rock and the Rock Cycle			
Open Rock and the Rock Cycle. Read an	d fill in the blanks.		
All rock (except for meteorites) that is on	Earth today is made	e of thestuff as the	ne rocks that dinosaurs
and other ancient life forms walked, craw	rled, and swam over.	While the stuff that rocks a	re from
stays the, the rocks		Over millions of years, rock	s are
into other rocks. Movi			
many types of rocks.			
Open What is a cycle? Read and fill in the	he blanks.		
Very simply, when scientists talk about cy	ycles, they are talkin	g about	of events that
repeat themselves. Some cycles are very		Other are very	cycles.
Activity #3 Rock Cycle			
Open Interactives Rock Cycle. Click "Be	egin with Types of Ro	ocks." Read and fill in the bi	lanks.
The three main types, or classes, of rock a	are		, and
and the differences a			
rocks are fo	rmad from partials	of	
pebbles, and other fragments of material.			
Gradually, the sediment accumulates in la			
sedimentary rock is fairly		· -	·
pebbles, or stones in the rock, and it is us			
Examples of this rock type include		and	
rocks are formed	under the	of the earth	from the
metamorphosis (change) that occurs due			
The rocks that result from these processes			
minerals growing slowly over time, on th	eir surface.		
Examples of this rock type include	aı	nd	

Name		I	Date	Perio	d	_
	rocks are form	ed when	(me	olten rock deep	within the earth	ı) cools and
	etimes the magma					
(in this case, in	t is called). When lava o	cools very qu	iickly,		form and the
	and					
process, leaving	ng tiny holes and s	paces in the rock.				
Examples of the	his rock type inclu	de	_ and			
the animation	ocks Change. Read on the right hand te section on this p	of the screen. You	can either d	raw or describ	U	
Heat & Press	ure					
What happens	to cookie dough v	when you put it in	the oven? Th	ie	of the o	ven produces
changes in the	e ingredients that m	nake them interact	and combine	e. Without melt	ing the dough, t	he heat changes it
into a whole n	new product — a co	ookie.				
A similar proc	ess happens to roc	ks beneath the ear	th's surface.	Due to movem	ents in the	, rocks
are frequently	pulled under the s	urface of the earth	, where temp	peratures	drama	tically the farther
they descend.	Between 100 and 2	200 kilometers (62	2 and 124 mi	les) below the	earth's surface, t	emperatures are
hot enough to	melt most rocks. I	However, before the	ne	point is 1	eached, a rock of	can undergo
fundamental c	changes while in a	solid state — morp	phing from o	ne type to anot	her without mel	ting.
An additional	factor that can tran	nsform rocks is the	e	caused by	tons of other ro	ocks
	down on it from	above;	and	usually w	ork together to a	alter the rocks
under the eartl	h's surface. This ki	nd of change, whi	ch results fro	om both rising t	emperature and	pressure, is called
	, and th	e resulting rock is	a	rock	· ·	
Describe the a	animation:					

Unit 5 Rock Cycle and Geological Time Webquest 4


Name	Date	Period	
Melting			
What happens to a chocolate ba	r when it gets very hot? It		
3 11	ck when it is heated enough. Of c		
	in the earth's crust and gets		
	300 degrees Celsius (1,100 and		
	d(molten rock		
Describe the animation:			
Cooling			
What would you do to turn a me refrigerator until it hardens.	elted chocolate bar back into a so	lid? You'd it by	putting it into the
Similarly, liquid magma also tur	rns into a solid — a	— when it is cooled. Any r	ock that forms from
the cooling of magma is an	rock. Magma the	at cools quickly forms one l	kind of igneous
rock, and magma that cools slov	vly forms another kind.		
When magma rises from deep w	vithin the earth and explodes out	of a volcano, it is called	, and
it cools on the	e surface. Rock formed in this wa	y is called	igneous rock. It
is extruded, or pushed, out of th	e earth's interior and cools outsid	le of or very near the earth's	surface.
surface over hundreds, thousand rate than lava erupting from a ve	t out of a volcano, but instead geds, or even millions of years? This olcano. The kind of rock formed	is magma will also cool, but	at a much slower
igheous fock. It infludes, of pus	hes, into the earth's interior and c	oois beneaut the surface.	

Describe the animation:

Name	Date	Period	
Weathering & Erosion			
What do dandelions rely on to separa	te their seeds, carry them	ı, and deposit them elsew	here? The wind.
All objects on the earth's surface are	exposed to the	, along with many	other elements —
, the,	changes. (Over time, these factors w	vear objects down and
break them apart. The resulting bits a	and pieces of material are	called	Sediment is then
transported by and	, often ending u	p far from where it starte	d. These processes of
breakdown and transport due to expo	sure to the environment a	are called	_ and
Weathering and	erosion affect all rocks of	on the earth's surface.	
Compaction & Cementing			
What happens to a loose pile of garb	aga whan it's nut into a a	omnostor? The aguaczina	of the machine produces
a solid cube of compacted garbage.	age when it's put into a ec	mpactor? The squeezing	of the machine produces
The same thing happens to	formed fro	om the weathering and er	osion of rock. Over time,
sediment accumulates in oceans, lake	es, and valleys, eventually	y building up in layers an	ddown
the material underneath. This weight	the	parti	cles together, compacting
them passing throu	gh the spaces in between	the particles helps to	them
together even more. This process of	compacting and cementing	g sediment forms sedime	entary rock.
Describe the animation:			

Name	Date	Period	_
Open <u>Transform the Rock</u> . Write in the c	questions / equations.		
1.			
2.			
3.			
4.			
5.			
Open <u>the Rock Cycle Diagram</u> . Read an	nd fill in the blanks.		
A useful way to illustrate how the three	main types of rock are relat	ed to one another and how	changes to rocks
happen in a recurring sequence is the		It can be pres	ented in a
diagram like the one below.			
The concept of the rock cycle is attribute	ed to James Hutton (1726—	-1797), the 18th-century fo	under of modern
geology. The main idea is that rocks are	continually changing from	one type to another and bac	ck again, as forces
inside the earth bring them closer to the	surface (where they are	,	, and
and forces on the	e earth sink them back dow	n (where they are	,
, and).	So the elements that make	up rocks are never	or
		he rock cycle helps us to se	
like a giant rock recycling machine!			

Name Date Period

Open <u>Complete the Cycle</u>. Record your results here _____. Teacher's initials _____.

Open <u>Test Your Skills</u>. Record your results here ______. Teacher's initials _____.